special
  •  #StandWithUkraine Ukraine flag |
  • ~538060+1220
     Enemy losses on 853th day of War in Ukraine

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2228227

СПОСОБ ОБЕЗВРЕЖИВАНИЯ РТУТЬСОДЕРЖАЩИХ ОТХОДОВ

СПОСОБ ОБЕЗВРЕЖИВАНИЯ РТУТЬСОДЕРЖАЩИХ ОТХОДОВ

Имя изобретателя: Борбат В.Ф.; Мухин В.А.; Канушин И.Ф. 
Имя патентообладателя: Омский государственный университет
Адрес для переписки: 644077, г.Омск-77, пр-т Мира, 55А, Омский государственный университет, патентная служба
Дата начала действия патента: 2002.10.07 

Изобретение относится к природоохранным технологиям и может быть использовано для переработки ртутьсодержащих отходов, например, отработанных люминесцентных ламп, ртутных термометров, барометров, вакуумметров и других устройств, содержащих ртуть в стеклянных оболочках. Способ обезвреживания ртутьсодержащих отходов предусматривает их совместный размол в смеси с измельчающей средой и использование серы для связывания металлической ртути, в способе дополнительно применяют водные растворы хлорида железа (3), подмыльного щелока и гидроксида натрия, при этом компоненты вводят в следующей последовательности: в смесь раствора хлорида железа (3) с измельчающей средой в виде щебня вводят порциями ртутьсодержащие отходы, дробят и измельчают их, затем добавляют заранее приготовленную смесь элементарной серы с подмыльным щелоком и раствором гидроксида натрия при следующем соотношении химических реагентов (в расчете на 0,1 мас.% ртути в отходах), мас.%: 10% раствор хлорида железа (3) 2,0-3,0; элементарная сера 0,4-0,6; подмыльный щелок 0,1-0,2; 10% раствор гидроксида натрия 1,5-2,5, обеспечивается возможность повышения эффективности способа путем предварительной подготовки ртути для снижения ее подвижности и серы для улучшения ее смачиваемости.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к природоохранным технологиям и может применяться для обезвреживания различных отходов, имеющих в своем составе металлическую ртуть, в частности отработанных люминесцентных ламп, ртутных термометров, манометров, вакуумметров различных типов и т.п. Такого рода отходы принадлежат к 1 классу опасности (Ртуть и ее соединения. Серия “Обзоры научной литературы по токсичности и опасности химических веществ”, Москва, 1998, - с.1-92).

Количество отработанных люминесцентных ламп исчисляется миллионами и возрастает с каждым годом. В каждой лампе может содержаться до 0,6 г ртути. При хранении отработанных ламп и других устройств или вывозе их на свалку имеется опасность разгерметизации стеклянных оболочек и попадания токсичной ртути и ее паров в природную среду. Следовательно, надежная демеркуризация ртутьсодержащих отходов крайне необходима.

Чаще всего утилизация и демеркуризация ртутьсодержащих отходов осуществляется путем их дробления и термообработки с последующей конденсацией паров ртути и получением снова металлической (вторичной) ртути или химической обработкой с переводом металлической ртути в малорастворимые нетоксичные химические соединения.

Опубликован и применяется способ демеркуризации люминесцентных ламп, в котором после дробления ламп ртуть возгоняют с последующей конденсацией и получением вторичной ртути (Патент РФ 2087572, кл. С 22 В 43/00 опубл. 1997.08.20). Опасность утечки горячих паров ртути при разгерметизации оборудования и высокая энергоемкость не всегда позволяют применить этот способ. К тому же, неочищенную вторичную ртуть трудно сбыть.

Известен и способ обезвреживания ртутьсодержащих отходов, предпологающий их совместный размол в смеси с серой до крупности частиц 5 мм, причем расход серы составляет от 0,1 до 5% от массы отходов (Заявка Японии №3-5236, кл. В 09 В 3/00, 1991). После добавления цемента и воды смесь отверждают. Из-за подвижности металлической ртути и инертности сухой серы необходимо длительное перемешивание для перехода всей ртути в ее сульфид, возможен неполный переход ртути.

Наиболее близким к заявляемому является способ обезвреживания ртутьсодержащих ламп, предусматривающий совместный размол их с серой, измельчающей средой, водой и сыпучим нетоксичным катализатором, способствующим увеличению поверхности контакта ртути и серы (Патент РФ №2156172, кл. В 09 В 3/00 С 22 В 43/00, 2000.09.20). Однако и этот способ недостаточно эффективен, т.к. применяемая для смачивания вода не лишает ртуть ее подвижности, в результате чего реакция серы с ртутью даже в присутствии предложенного катализатора может протекать достаточно долго и неполно.

Задачей настоящего изобретения является возможность повышения эффективности способа путем предварительной подготовки ртути для снижения ее подвижности и серы для улучшения ее смачиваемости.

Такой технический результат получается за счет того, что в способе обезвреживания ртутьсодержащих отходов, основанном на совместном их размоле с измельчающей средой и использованием элементарной серы для связывания металлической ртути прежде всего обеспечивают снижение подвижности ртути путем совместного размола отработанных ламп и других ртутьсодержащих отходов с 10-20% водным раствором хлорида железа (3) и щебнем фракции 100-150 мм.

Через 15-30 минут после введения последней порции отходов и интенсивного размола в герметичном горизонтальном вращающемся барабане внутрь вводится предварительно подготовленная смесь элементарной серы с подмыльным щелоком - отходом производства хозяйственного мыла и раствора гидроксида натрия. При этом соотношение вводимых химических реагентов следующее - в расчете на 0,1 мас.% ртути в отходах, мас.%:

10-20% водный раствор хлорида железа (3) 2,0-3,0; элементарной серы 0,4-0,6; подмыльного щелока 0,1-0,2; 10% раствора гидроксида натрия 1,5-2,5. Процесс обезвреживания целесообразно проводить при температуре окружающего воздуха 0-18ºС для предотвращения испарения металлической ртути.

Использование 10-20% водного раствора хлорида железа (3) лишает ртуть свойственной ей подвижности и обеспечивает улучшение контакта с измельчающей средой и реагентами. При контакте ртути с раствором хлорида железа (3) протекает следующая реакция:

Величина рН системы после окончания реакции (1) находится в пределах 0,9-1,2.

Из всех ртутьсодержащих продуктов этой реакции растворима только сулема HgCl2, присутствие которой возможно в малых количествах, растворимость остальных очень мала и составляет от 10-3-10-4 г/л для Hg2Cl2 до 10-6-10-7 г/л для Hg2O и HgO (Ю.Ю.Лурье, Справочник по аналитической химии, М., Химия, 1979 г., с.92-101).

После завершения размола, длящегося не менее 15-30 минут, во вращающийся барабан вводят предварительно приготовленную смесь элементарной серы, подмыльного щелока и 10% раствора гидроксида натрия. Для приготовления смеси рассчитанное количество серы размешивают в подмыльном щелоке, при этом устраняется гидрофобность серы и обеспечивается хорошая смачиваемость ее, облегчающая полноту протекания последующих реакций. Добавление 10% раствора гидроксида натрия приводит к появлению в смеси нескольких продуктов, в том числе сульфида и полисульфидов натрия, необходимых для перевода продуктов реакции (1) в нерастворимые, нетоксичные сульфиды ртути и железа.

(Некрасов Б.В. Основы общей химии. T.1. М.: Химия, 1965, с.331;

Угай Я.А. Неорганическая химия. - М.: Высшая школа, 1989, с.317.) Величина рН образовавшейся системы составляет 11,5-12,0.

При смешивании системы (1) со смесью (2) железо перейдет в осадки гидроксидов Fe(OH)2 и Fе(ОН)3, (растворимость 10-4-10-8 г/л) и в нерастворимые осадки FeS и Fе2S3(растворимость 10-8 и 10-6 г/л соответственно). При этом в первую очередь ранее образовавшиеся ртутьсодержащие осадки Hg2Cl2, Hg2O и HgO переходят в практически нерастворимые сульфиды ртути Hg2S и HgS (растворимость 10-21 и 10-24г/л соответственно). Эти сульфиды ртути одни из самых малорастворимых соединений и поэтому нетоксичны.

После смешивания и перетирания систем (1) и (2) рН образовавшегося продукта составляет 6-8, и вследствие того, что HgS обладает наименьшей растворимостью из всех известных сульфидов, все другие сульфиды перейдут в него и не останется несвязанных ионов Hg2+Значения потенциала и рН образовавшегося продукта находятся в области диаграммы -рН, соответствующей существованию сульфида ртути HgS (Geological Survey Professional Paper 713. Mercury in the Environment, United States Department of Interior, Washington D.C., 1970, p.20; Тинсли И. Поведение химических загрязнителей в окружающей среде. М.: Мир, 1982, с.112.).

Способ осуществляют следующим образом.

В аппарат для обезвреживания ртутьсодержащих отходов, в качестве которого предпочтительнее использовать горизонтальный вращающийся барабан, допускающий герметизацию - возможно стационарную или передвижную бетономешалку, предварительно загружается определенный рассчитанный на заданное количество ртути в отходах объем 10-20% раствора хлорида железа (3) и щебня фракции 100-150 мм. Число оборотов барабана может изменяться в зависимости от характера обезвреживаемых ртутьсодержащих отходов. В процессе обработки неоднократно меняется направление вращения барабана для улучшения полноты протекания реакций.

Затем во вращающийся барабан постепенно загружают рассчитанное количество ртутьсодержащих отходов, чтобы по мере загрузки и разрушения ламп и других отходов вся ртуть успевала скатиться в раствор хлорида железа. Через 15-30 минут после загрузки последней лампы открывают барабан и при вращении добавляют заранее подготовленную смесь элементарной серы с подмыльным щелоком и гидроксидом натрия и перемешивание продолжается еще 30-60 минут. После этого полученная смесь загружается в транспортное средство и вывозится на карту полигона IV класса опасности.

Принятая последовательность загрузки компонентов исключает попадание паров ртути в атмосфер

Версия для печати
Дата публикации 19.02.2007гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018