special
  •  #StandWithUkraine Ukraine flag |
  • ~540490+1170
     Enemy losses on 856th day of War in Ukraine

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2201562

ТЕПЛОГЕНЕРАТОР ПРИВОДНОЙ КАВИТАЦИОННЫЙ

Имя изобретателя: Бритвин Лев Николаевич; Бритвина Татьяна Валерьевна
Имя патентообладателя: Бритвин Лев Николаевич; Бритвина Татьяна Валерьевна
Адрес для переписки: 111673, Москва, а/я 60, Л.Н. Бритвину
Дата начала действия патента: 1999.05.19

Изобретение относится к теплогенерирующим установкам кавитационного типа и может быть использовано для систем отопления. Теплогенератор приводной кавитационный включает корпус, в котором расположены относительно подвижные рабочие органы, вход и выход которых гидравлически сообщены посредством циркуляционного канала с дросселирующим элементом. Рабочие органы, по меньшей мере, один из которых связан с приводным двигателем, выполнены в виде оппозитно расположенных дисков, установленных с гарантированным зазором между их торцами, снабженными прилегающими между собой канавками, расположенными на взаимодействующих рабочих торцах дисков наклонно друг к другу. Такое выполнение теплогенератора упрощает его конструкцию и обеспечивает эффективность его применения с приводными двигателями малой и средней мощности при одновременном повышении надежности, упрощении условий эксплуатации и ремонта.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к теплогенераторам кавитационного типа, используемым для систем отопления.

Известен способ получения тепла за счет процесса кавитации, согласно которому жидкость перекачивают насосом по замкнутому циркуляционному каналу через вихревую форсунку, создавая колебания давления в контуре циркуляции, см. патент РФ 2061195, кл. 6 F 24 J 3/00 - аналог.

Устройства, реализующие этот способ, требуют использования технически сложных устройств, а режимы создания колебаний в контуре циркуляции не достаточно четко определены.

Известно и устройство, в котором рабочие органы насоса - лопастные центробежные колеса - на своем выходе взаимодействуют со специальным неподвижным рабочим органом, что приводит к возникновению кавитации и пульсации давления. При этом рабочие органы расположены в общем корпусе, а вход и выход из этих рабочих органов сообщены циркуляционным каналом, снабженным дроссельным элементом, см. патент РФ 2054604, кл. F 24 J 3/00 - прототип.

Данный теплогенератор имеет сложную конструкцию, практически не позволяющую эффективно его выполнять для небольших тепловых мощностей. Установка неподвижного рабочего органа на выходе подвижного рабочего органа приводит к срабатыванию всего напора рабочего колеса на небольшом участке неподвижного рабочего органа, что приводит к повышенному его износу.

Задачей данного изобретения являетсясущественное упрощение конструкции теплогенератора и технологии его изготовления до уровня, обеспечивающего эффективность его применения с приводными двигателями малой и средней мощности, ориентировочно от 1,5 до 15 кВт при одновременном повышении надежности, упрощении условий эксплуатации и ремонта.

Данная задача решается тем, что рабочие органы, по меньшей мере, один из которых связан с приводным двигателем, выполнены в виде оппозитно расположенных дисков, установленных с гарантированным зазором между их рабочими торцами, снабженными прилегающими между собой канавками, выполненными по всей поверхности рабочих торцов. При этом для интенсификации процесса образования и схлопывания кавитационных каверн при движении жидкости вдоль канавок и по щели между дисками от оси к периферии канавки на взаимодействующих рабочих торцах дисков выполнены наклонно друг к другу.

Кроме того, для дополнительной интенсификации процесса энерговыделения в случае выполнения канала между дисками с проходным сечением, увеличивающимся с радиусом, а и для снижения потребления энергии на приведение дисков и обеспечения многоразового процесса образования и схлопывания кавитационных каверн при движении жидкости от оси к периферии дисков, по меньшей мере, в одном из дисков на его торце выполнены сквозные расположенные на одном или нескольких различных радиусах отверстия, сообщающие рабочий канал между дисками с полостью корпуса.

Для этих же целей дросселирующий элемент циркуляционного канала установлен непосредственно на входе и/или выходе междискового рабочего канала и выполнен с переменным проходным сечением по углу поворота подвижного диска, а по периферии дисков на выходе из междискового рабочего канала установлен дополнительный щелевой кавитатор.

Для упрощения теплосистемы в целом, ускорения ее разогрева и обеспечения принудительной циркуляции жидкости во внешних потребителях тепла (например, теплообменниках) посредством тех же дисковых рабочих органов в корпусе в периферийной зоне действия дисков расположены прямой (отводной) и обратный (подводной) каналы, подключенные к теплообменникам. К циркуляционному каналу и может быть подключен, по меньшей мере, один потребитель тепла с регулируемым по температуре дросселем.

Для повышения удельной мощности и разгрузки опор привода от осевых усилий, по меньшей мере, один рабочий орган-диск снабжен канавками с обоих его торцов и расположен между рабочими торцами других двух дисковых рабочих органов.

Для обеспечения запуска и эксплуатации теплогенератора после подключения его к теплосистеме в корпусе теплогенератора со стороны нерабочего торца диска выполнена осесимметричная сепарационная камера, сообщенная с атмосферой для сброса воздуха из системы и снижения насыщенности рабочей жидкости растворенным газом.

Для целей получения потока теплого воздуха корпус теплогенератора может быть снабжен теплообменными ребрами, которые могут быть выполнены как вентиляторные лопатки при кинематической связи корпуса с приводным двигателем.

ТЕПЛОГЕНЕРАТОР ПРИВОДНОЙ КАВИТАЦИОННЫЙ
   
ТЕПЛОГЕНЕРАТОР ПРИВОДНОЙ КАВИТАЦИОННЫЙ
   
ТЕПЛОГЕНЕРАТОР ПРИВОДНОЙ КАВИТАЦИОННЫЙ ТЕПЛОГЕНЕРАТОР ПРИВОДНОЙ КАВИТАЦИОННЫЙ
   

На фиг. 1 - 7 даны примеры выполнения описываемого устройства и его рабочих органов.

В корпусе 1, см. фиг.1, закреплен неподвижный рабочий орган-диск 2, оппозитно которому установлен вращающийся подвижный рабочий орган-диск 3, расположенный с гарантированным зазором от диска 1. По радиусу этот зазор может быть постоянным или переменным. На взаимодействующих торцах дисков 1 и 2 выполнены прилегающие друг к другу канавки 5. Валом 6 диск 3 связан с приводным двигателем (не показан).

На подвижном диске 3 выполнены сквозные отверстия 7, расположенные, например, по торцу диска в шахматном порядке и сообщающие канавки 5 с внутренней полостью 8 корпуса 1.

В корпусе 1 в периферийной зоне действия рабочих органов 2 и 3 установлены тангенциально расположенные прямой и обратный каналы-патрубки 9 и 10, сообщенные с внешними теплообменниками 11.

Со стороны нерабочего торца диска 3 в корпусе 1 выполнена осесимметричная сепарационная камера 12, в данном варианте конструкции отделенная от отверстий 7 разделительной перегородкой 13 и сообщенная вертикальным каналом 14 с расширительным бачком 15 системы теплоснабжения.

Примеры выполнения канавок 5 на торце диска представлены на фиг.2. Диски 2 и 3 могут иметь различные формы канавок и их ориентации на рабочем торце или одинаковые и использоваться в теплогенераторе в различных комбинациях.

Наиболее предпочтительны формы ориентации канавок, когда канавки 5 и 5' на взаимодействующих рабочих горцах дисков 2 и 3 выполнены наклонно друг к другу, см. фиг.3, и составляют между собой угол существенно больший нуля, что обеспечивает создание в торцевом зазоре сети рабочих камер 16, 16', 16''..., расположенных на различных радиусах дисков и ограничиваемых вихревыми жгутами, образующимися на кромках канавок 5 и 5' при их относительном движении.

Вход и выход рабочих органов 2, 3 сообщены посредством циркуляционного канала, в данном случае проходящего через полость 8 (см. фиг.1) корпуса 1, зазор между перегородкой 13 и диском 3. Дросселирующий элемент, выполненный здесь в виде калиброванных отверстий 17 в центральной части диска 3, и полость всасывания 18 рабочих органов.

РАБОТАЕТ ТЕПЛОГЕНЕРАТОР СЛЕДУЮЩИМ ОБРАЗОМ

После заполнения теплосистемы рабочей жидкостью, например водой, и включении двигателя за счет вращения диска 3 через вал 6 происходит циркуляция воды между периферийным выходом их рабочих органов 2 и 3 и полостью их всасывания 18. Одновременно за счет вращения жидкости в периферийной зоне полости 8 осуществляется циркуляция воды через эту полость, патрубки 9, 10 и теплообменники 11. При этом выделяющийся воздух постепенно сепарируется в камере 12 и выводится вверх в бачок 15.

Дополнительная циркуляция воды в рабочем канале между дисками 2 и 3 осуществляется за счет перетока воды через каналы 7 в диске 3. При относительном движении канавок в поле центробежных сил образуются интенсивные вихри по всем кромкам сети рабочих камер 16. Кавитационные каверны, которые, перемещаясь по рабочему каналу между дисками 2 и 3, периодически попадают в зоны низкого и высокого давления за счет изменения размера самих камер, перемещения вихрей в плоскости дисков через переменные сопротивления ограничивающих их и относительно подвижных кромок канавок 5, 5'. На весь процесс и наложены высокочастотные пульсации давления, возникающие при коллапсе кавитационных каверн, а и за счет пульсаций расхода через каналы 7 и зазор между дисками. В результате происходит интенсивное тепловыделение и разогрев рабочей жидкости в теплосистеме. Процесс пуска и остановки вала 6, а и скорость его вращения могут регулироваться по температуре рабочей жидкости в теплосистеме и обогреваемом помещении.

На фиг. 4 представлен вариант выполнения теплогенератора с подвижным диском 3, на обоих торцах которого выполнены рабочие канавки 5 и который расположен между двумя неподвижными дисками 19 и 19', Теплогенератор имеет два нагревательных контура, один из которых каналами 9, 10 сообщен с внешним теплообменником 11, а второй в циркуляционном контуре содержит теплообменник 11' и бойлер (тепловой аккумулятор) 20 (с теплообменником системы горячего водоснабжения с дросселем 21, выполненным регулируемым по температуре в бойлере 20. При этом с понижением температуры сечение дросселя 21 уменьшается, что приводит к снижению давления в полости 18 всасывания, интенсификации процессов кавитации и тепловыделения и, следовательно, к ускорению разогрева бойлера 20.

С повышением температуры и давления насыщенных паров дроссель 21 приоткрывается и повышает давление в полости всасывания 18, одновременно увеличивая расход жидкости в циркуляционном контуре. Подвод тепла к теплообменнику 11 регулируется дросселем 22, например, по температуре в помещении. Для дополнительной интенсификации кавитационных процессов здесь на выходе рабочего междискового канала дисков 19 и 3 последовательно основному дросселирующему элементу 17 циркуляционного канала установлен дополнительный дросселирующий элемент 23, с переменным сечением по углу поворота подвижного диска 3 (например, с рядом окон, расположенных по периферии элемента 23, выполненного в виде цилиндрической гильзы). Такая конструкция при работе теплогенератора обеспечивает переменность давления в сети рабочих камер 16, 16', 16'', ... в различных секторах рабочего междискового канала по углу поворота диска и интенсификации процесса тепловыделения.

На фиг.5 дан пример выполнения теплогенератора, где сепарационная камера 12 выполнена со стороны вала 6, а вал снабжен лабиринтным уплотнением 24 и стояночным уплотнением 25. Вместо лабиринтного уплотнения возможно применение импеллерного уплотнения 26 на разделительной перегородке 13 камеры 12. Отверстия 7 в перегородке 13 улучшают работу импеллера как центробежного сепаратора воздуха. Применение динамических уплотнений по типу 24, 26 в совокупности со стояночным уплотнением обеспечивает автоматическое удаление воздуха из рабочей жидкости при простой конструкции теплогенератора.

В данном варианте исполнения дополнительная интенсификация процесса тепловыделения достигается за счет периодического изменения проходного сечения дросселирующего элемента, выполненного в виде калиброванных отверстий 17 на подвижном диске 3, перекрываемых по углу его поворота торцевой шайбой 27 с проходными окнами. Положение шайбы 27 относительно отверстий 17 может регулироваться вручную или автоматически. Выполнение зазора переменным при угле >0 между торцами дисков способствует интенсификации процесса коллапса кавитационных каверн при наложении пульсаций давления.

На фиг.6 дан пример теплогенератора для нагрева воздуха посредством обдува ребер 28 нагретого корпуса 1 теплогенератора. В показанном варианте корпус 1 выполнен вращающимся и жестко связан с валом 6, а ребра корпуса выполнены как вентиляторные лопатки, обеспечивающие движение нагретого воздуха.

На фиг.7 в корпусе 1 оба рабочих органа - 29 и 30 - выполнены вращающимися в разные стороны, например, посредством двух двигателей 31 и 32, что позволяет в широком диапазоне регулировать теплопроизводительность теплогенератора. При отключении одного из двигателей соответствующий вал затормаживается тормозным устройством 33 или 34, например, выполненным в виде обгонной муфты.

Дополнительные пульсации давления в рабочем междисковом канале здесь достигается периодическим подключением и отключением отверстий 7 к полости 8 корпуса 1 за счет относительного вращения дисков 29 и 30 относительно пазов 35 в торцевых стенках корпуса 1, гидравлически сообщающих камеру 8 с полостью всасывания 18 рабочих органов.

Для ускорения процесса схлопывания кавитационных каверн в рабочем зазоре между дисками на их выходе располагается кольцевой щелевой дополнительный кавитатор, повышающий давление перед выходом рабочей жидкости из рабочего зазора в камерах. 16, см. фиг.3, и интенсифицирующий затухание кавитационных процессов в камере 8, при одновременном снижении в ней рабочего давления.

Описанный теплогенератор имеет простую конструкцию, технологичен, рабочие органы легко и без больших затрат заменяются при обслуживании и ремонте.

Теплогенератор легко приспосабливается для использования в самых различных системах отопления и горячего водоснабжения, автоматически обеспечивает запуск системы, имеет широкие возможности для peгулирования температуры и интенсификации процесса избыточного энерговыделения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Теплогенератор приводной кавитационный, в корпусе которого расположены относительно подвижные рабочие органы, вход и выход которых гидравлически сообщены посредством циркуляционного канала с дросселирующим элементом, отличающийся тем, что рабочие органы, по меньшей мере, один из которых связан с приводным двигателем, выполнены в виде оппозитно расположенных дисков, установленных с гарантированным зазором между их торцами, снабженными прилегающими между собой канавками, расположенными на взаимодействующих рабочих торцах дисков наклонно друг к другу.

2. Теплогенератор по п. 1, отличающийся тем, что дросселирующий элемент циркуляционного канала установлен на входе и/или на выходе междискового рабочего канала и выполнен с переменным сечением по углу поворота подвижных рабочих органов.

3. Теплогенератор по любому из пп. 1 и 2, отличающийся тем, что, по меньшей мере, в одном из дисков выполнены сквозные, расположенные, по меньшей мере, на одном радиусе, отверстия, сообщающие образованный торцами дисков и канавками рабочий канал с полостью корпуса.

4. Теплогенератор по любому из пп. 1-3, отличающийся тем, что на периферии дисков на выходе междискового рабочего канала установлен дополнительный кольцевой щелевой кавитатор.

5. Теплогенератор по любому из пп. 1-4, отличающийся тем, что в корпусе расположены связанные с внешними потребителями тепла прямые и обратные гидравлические каналы, находящиеся под перепадом давления, образованным за счет относительного вращения дисковых рабочих органов.

6. Теплогенератор по любому из пп. 1-5, отличающийся тем, что, по меньшей мере, один рабочий орган снабжен канавками с обоих его торцев и расположен между рабочими торцами других двух дисковых рабочих органов.

7. Теплогенератор по любому из пп. 1-6, отличающийся тем, что в корпусе теплогенератора со стороны нерабочего торца диска выполнена осесимметричная сепарационная камера, сообщенная с атмосферой.

8. Теплогенератор по любому из пп. 1-7, отличающийся тем, что корпус теплогенератора снабжен выполненными как вентиляторные лопатки теплообменными ребрами и кинематически связан с приводным двигателем.

Версия для печати
Дата публикации 31.12.2006гг

 

 


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018