special

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2095443

СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ РАСТВОРОВ

Имя изобретателя: Гуров В.А.; Иванов В.С. 
Имя патентообладателя: Акционерное общество открытого типа "Дирекция Межправительственной инновационной рудной программы"
Адрес для переписки: 
Дата начала действия патента: 1996.09.03 

Использование:гидрометаллургия благородных металлов и может быть использовано для их извлечения из продукционных растворов выщелачивания руд и промышленных сточных вод.

Сущность: способ включает периодическое чередование циклов сорбции благородных металлов на ионитах и обработки ионитов раствором, содержащем восстановитель благородных металлов в форме противоиона функциональных групп ионитов. Способ позволяет повысить насыщение благородными металлами ионитов.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к гидрометаллургии благородных металлов и может быть использовано для извлечения благородных металлов из продукционных растворов при выщелачивании руд и материалов, из сточных вод и промышленных сливов обогащения руд, для разделения и очистки от примесей благородных металлов.

Известен способ извлечения благородных металлов, в частности серебра, из раствора азотнокислого серебра на амфотерном ионите марки ВСТ в Na+-форме (А.Б. Даванков, В.М. Лауфер и Л.А. Шиц "ЖПХ", 1957, т.30, вып.6, с.839-844). После цикла сорбции серебра ионит обрабатывали раствором гидрохинона и вновь вели сорбцию.

Недостатком способа являетсянизкое насыщение ионита благородным металлом при сорбции его из разбавленных растворов из-за использования для обработки ионита раствора восстановителя, гидрохинона в неионогенной форме.

Наиболее близким к изобретению является способ извлечения благородных металлов, в частности серебра, из раствора азотнокислого серебра на сильнокислом катионите марки КУ-2 (А.Б. Даванков и В.М. Лауфер "Изв. Вуз. Цветная металлургия", N 4 за 1961 г, с.121-123 и "Заводская лаборатория", т.22, вып.7 за 1956 г, с.788-789). Здесь чередовали периодически циклы сорбции серебра и электрохимического его восстановления в фазе ионита в одном случае или обработки ионита раствором восстановителя, гидросульфита натрия в другом случае.

Недостатком этого способа и является низкое насыщение ионита благородным металлом из-за обработки ионита раствором, содержащем восстановитель, гидросульфит-ион, не в форме противоиона функциональных групп катионита.

Целью изобретения являетсяповышение насыщения ионитов при сорбции благородных металлов из растворов.

Цель достигается тем, что при чередовании циклов сорбции благородных металлов и обработки ионитов раствором восстановителя благородных металлов обработку ионитов ведут раствором, содержащем восстановитель в форме противоиона функциональных групп ионитов.

Сущность изобретения состоит в следующем. При сорбции катионов серебра на катионите они связываются функциональной группой ионита как противоионы, вытесняя в раствор катионы, которыми был заряжен ионит до сорбции. При обработке катионита после цикла сорбции раствором гидросульфита натрия происходит восстановление ионов серебра до металлического состояния и отложение благородного металла в фазе ионита. Место серебра на функциональных группах ионита занимают, например, ионы Na+ или другие катионы, содержащиеся в сорбируемом растворе. При высоком солесодержании и низкой концентрации извлекаемого благородного металла в сорбируемом растворе, что обычно имеет место, насыщение ионита благородным металлом в цикле сорбции становится очень невысоким. В результате необходимо часто чередовать операции сорбции и обработки ионита раствором восстановителя. Если же ионит, в данном случае катионит, обработать раствором, содержащем восстановитель в соответствующем количестве в форме противоиона функциональных групп ионита, т.е. в данном случае в форме катиона, то восстановитель не только восстановит серебро, но и займет его место на функциональных группах. Например, если катионит обработать раствором хлорида олова (II), то катионы Sn2+восстановят серебро до металлического состояния и, являясь противоионами, зарядят катионит в Sn2+-форму. В результате в процессе последующей сорбции катионы серебра будут не только обмениваться с катионами Sn2+ на функциональных группах, но и восстанавливаться и отлагаться в фазе ионита уже в цикле сорбции. Таким образом, в процессе сорбции будут происходит и ионный обмен и восстановление серебра в фазе ионита. Вследствие этих обстоятельств повысится избирательность ионита к благородному металлу и возрастет насыщение ионита. Кроме солей олова (II) в данном случае можно обработать катионит раствором солей гидразина или гидроксиламина, содержащем восстановитель серебра в форме катиона. Если же благородный металл присутствует в растворе в анионной форме, например, в виде хлоридных комплексов, и сорбция осуществляется на анионите, то последующая обработка анионита раствором, содержащем восстановитель в форме противоионов функциональных групп ионита, например раствором гидросульфита натрия, приведет к такому же результату. Ионы HSO-3восстановят благородный металл и зарядят анионит в HSO-3 -форму. При последующей сорбции будет происходить и ионный обмен, и восстановление благородного металла в фазе анионита, а насыщение ионита возрастет.

Таким образом, если при периодическом чередовании циклов сорбции благородных металлов и обработки ионитов раствором восстановителя благородных металлов обработку ионитов вести раствором, содержащем восстановитель в форме противоиона функциональных групп ионитов, то насыщение ионитов благородным металлом возрастет и поставленная цель будет достигнута.

По известному и предлагаемому вариантам в лабораторных условиях осуществляли сорбцию серебра из раствора нитрата серебра на катионите марки КУ-2-8. Навеску катионита помещали в колонку и фильтровали раствор до насыщения ионита. Затем катионит обрабатывали раствором восстановителя серебра и проводили второй цикл сорбции. По остаточной концентрации серебра в сорбируемом растворе определяли количество извлеченного серебра и насыщение катионита благородным металлом. Концентрация серебра в исходном растворе составляла 30 мг/л. По известному варианту катионит обрабатывали раствором гидросульфита натрия с концентрацией 52 г/л, эквивалентной восстановительной емкости по серебру 1 г-экв/л. По предлагаемому варианту катионит обрабатывали раствором хлорида олова (II) с концентрацией 95г/л, эквивалентной восстановительной емкости по серебру и 1 г-экв/л. Результаты представлены в таблице.

СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ РАСТВОРОВ. Патент Российской Федерации RU2095443

Из данных таблицы следует, что при обработке катионита раствором хлорида олова (II), содержащем восстановитель в форме противоиона функциональных групп ионита, в сравнении с его обработкой раствором гидросульфита натрия, остаточная концентрация серебра снизилась в большей степени и насыщение катионита серебром возросло со 143 до 246мг/г ионита.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ извлечения благородных металлов из растворов, включающий периодическое чередование циклов сорбции благородных металлов на ионитах и обработку ионитов раствором восстановителя благородных металлов, отличающийся тем, что обработку ионитов ведут раствором, содержащим восстановитель в форме противоиона функциональных групп ионитов.

Версия для печати
Дата публикации 05.12.2006гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

';>