special

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2164554

СПОСОБ ВЫДЕЛЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ РАСТВОРА

Имя изобретателя: Карманников В.П.; Игумнов М.С.; Драенков А.Н.; Татаринцев А.Н.; Ковалев В.В.; Клеандров В.Т.; Юрасова О.В. 
Имя патентообладателя: Карманников Владимир Павлович
Адрес для переписки: 125167, Москва, ул. К. Симонова, д.4, кв.90, Клименко М.А.
Дата начала действия патента: 2000.01.26 

Изобретение относится к цветной металлургии и может быть использовано для электрохимического извлечения благородных металлов. Водный раствор после экстракционной переработки благородных металлов, например рафинат после экстракции платины и палладия, нейтрализуют до остаточной кислотности 20-30 г/л НС1. Раствор обрабатывают в электролизере на плоском титановом катоде при плотности тока 1500-2000 А/м2 и напряжении 8-12 В. В происходящем при этом процессе электрофлотокоагуляции образуются гидроксиды неблагородных металлов, на которых адсорбируются органические вещества, находящиеся в растворе. К ним относятся экстрагенты и растворители, например ТБФ, керосин, октанол и др. Очищенный раствор содержит следы неорганических примесей и органики. Из него осаждают благородные металлы на трехмерном проточном катоде из графитового материала. Результат способа: возможность переработки растворов, полученных в результате экстракционной переработки благородных металлов, повышение извлечения и чистоты конечного продукта.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к цветной металлургии и может быть использовано для электрохимического извлечения благородных металлов: золота, платины, палладия, родия, иридия из разбавленных солянокислых растворов, образующихся при экстракционной переработке первичного и вторичного сырья и содержащих органические вещества: экстрагенты и разбавители.

Переработка растворов, полученных в результате экстракционной технологии извлечения благородных металлов, весьма актуальна и сложна.

Во-первых, эти растворы (рафинаты, промывные растворы и т.д.) имеют низкую концентрацию благородных металлов.

Во-вторых, они содержат примеси неблагородных металлов и органические вещества - остатки экстрагентов и разбавителей, которые образуют прочные комплексы с платиновыми металлами.

Известен способ выделения благородных металлов из растворов, содержащих органические комплексы (патент США 4201636, С 25 С 1/20, 1980).

Способ предусматривает регулировку pHраствора до величины ±0,5и удаление основного количества щелочных и амфотерных металлов путем фильтрации. Фильтрат нагревают до 70oC и подвергают электролизу, поддерживая температуру на уровне 70oC и напряжение 8 В. В процессе электролиза происходит разрушение комплексов, а платиновые металлы осаждаются в виде гидроксидов, которые отфильтровывают.

Способ имеет следующие недостатки: наличие двух фильтраций и осаждение неблагородных примесей ведет к потерям благородных металлов. Сами благородные металлы получаются в виде гидроксидов, а значит, они могут быть загрязнены органическими соединениями и их последующее выделение в виде металлов многостадийно.

Известен и способ выделения благородных металлов из солянокислого раствора электролизом (патент РФ 2131485, С 25 С 1/20, 10.06.1999).

Способ предусматривает двухстадийную электрохимическую обработку раствора.

На первой стадии проводят осаждение благородных металлов на титановом катоде при плотности тока 200-300 А/м2. На второй стадии осаждение благородных металлов из растворов с низкой концентрацией ведут на трехмерных проточных графитовых катодах при плотности тока 20-60 А/м2.

Недостаток способа, являющегося наиболее близким аналогом, заключается в том, чтовыход по току и извлечение платиновых металлов, в частности родия и иридия, очень низки при переработке растворов, образующихся в процессе экстракционного разделения платиновых металлов. Присутствие органических веществ: трибутилфосфата (ТБФ), керосина, октанола, нефтяных сульфониевых оснований (НСО) и др., образующих прочные комплексы с платиновыми металлами, существенно увеличивает катодную поляризацию платиновых металлов (на 0,8-0,9 В) и на катоде преимущественно выделяется водород. Кроме того, в этом случае не происходит очистка от растворенных органических веществ экстрагентов-ТБФ, НСО и др. и органических растворителей - керосина, октанола и др.

Задача изобретения - создание такого способа выделения благородных металлов из раствора, в результате которого расширятся функциональные возможности способа за счет переработки растворов, полученных при экстракционной технологии извлечения благородных металлов, повышается чистота благородных металлов.

Поставленная задача решается тем, что в способе выделения благородных металлов из солянокислого раствора, включающем элктрохимическую обработку раствора и осаждение благородных металлов на трехмерном проточном катоде из графитового материала, обработке подвергают водный раствор после экстракционной переработки благородных металлов и ведут ее при катодной плотности тока 1500-2000 А/м2 и напряжении 8-12 В.

Способ и отличается тем, что обработку раствора ведут в течение 0,5-1,5 ч, а раствор перед обработкой нейтрализуют до остаточной плотности 20-30 г/л HCl.

При обработке исходного раствора с использованием титанового катода и графитового анода при плотности тока 1500- 2000 А/м2 и напряжении 8-12 В одновременно протекает несколько процессов:

- электрохимическое выделение платиновых металлов и восстановление их водородом, выделяющимся на катоде;

- электрохимическое окисление органических веществ кислородом и хлором, выделяющимися на аноде;

- устойчивое пенообразование и флотация, связанные с интенсивным выделением пузырьков газа (H2, O2, Cl2) и наличием органических веществ в растворе;

- изменение pH раствора от 0,1 до 7,0-8,5 за счет электролиза воды по реакции К: 2 H2О + 2e = H2 + 2 ОН-.

Подщелачивание раствора приводит к снижению устойчивости комплексов платиновых металлов, образованию и коагуляции гидроксидов, присутствующих в растворах неблагородных металлов: никеля, железа, свинца и др., на которых адсорбируются окисленные на аноде органические и неорганические компоненты перерабатываемых растворов. Таким образом, при электрохимической обработке раствора одновременно протекают электроэкстракция платиновых металлов и электрофлотокоагуляция, за счет которых и производится извлечение органических и неорганических составляющих растворов. После электрохимической обработки (1 стадия) раствор фильтруют и направляют на вторую стадию: выделение благородных металлов до сбросных концентраций в электролизере с трехмерными катодами из углеродного материала с катионообменными мембранами. Перерабатываемый солянокислый раствор, содержащий микроколичества благородных металлов, циркулирует через последовательно соединенные катодные камеры. Анодные камеры заполняют раствором серной кислоты с концентрацией 5-10%. Электрохимическое осаждение проводят при габаритной плотности тока 20 - 60 А/м2, скорость циркуляции электролита от 2,0 - 3,5 м32·ч).

При уменьшении концентрации соляной кислоты ниже 20 г/л в процессе предварительной нейтрализации перерабатываемых растворов, выпадает мелкодисперсный, плохо фильтруемый осадок (смесь гидроксидов и органических веществ), что затрудняет дальнейшую электрохимическую обработку из-за пассивации электродов. Повышение концентрации кислоты более 30 г/лприводит к росту времени электрохимической обработки, снижает выход по току и извлечение платиновых металлов.

Снижение плотности тока на первой стадии электрохимической обработки ниже 1500 А/м2и напряжения менее 8 В приводит к уменьшению степени извлечения платиновых металлов и окисления органических компонентов, при этом образуются плохо фильтруемые осадки.

При увеличении плотности тока выше 2000 А/м2и напряжения выше 12 В возрастает расход электроэнергии, электролит интенсивно разогревается и закипает. При уменьшении на второй электрохимической стадии плотности тока ниже 20 А/м2 уменьшается извлечение благородных металлов и их остаточная концентрация превышает допустимое содержание в сбросных растворах. Увеличение плотности тока более 60 А/м2на второй стадии практически не влияет на показатели электролиза, но увеличивает затраты электроэнергии.

Высокое извлечение платиновых металлов достигается за счет разрушения комплексов платиновых металлов с органическими компонентами ТБФ, НСО при нейтрализации и электрохимической обработке (электрофлотокаогуляция, электроэкстракция), а и применения на второй стадии трехмерных проточных катодов из углеродного материала с высокоразвитой поверхностью.

Примеры осуществления способа приведены ниже.

Пример 1
Промышленный раствор-рафинат (10 литров), образующийся после экстракционной очистки от неблагородных примесей и экстракционного выделения палладия и платины, содержащий, мг/л: золото - <10, серебро - 90,5, платину - 471, палладий - 2200, родий - 275, иридий - 540, никель - 104, свинец - 24,6, железо - 41,0; экстрагенты: ТБФ-200, НСО-1430; растворители: керосин -185, октанол - 28 и соляную кислоту - 68 г/л нейтрализовали до кислотности 25 г/л HCl, подвергали электрохимической обработке при плотности тока 1750 А/м2, напряжении 10 В в течение 1 ч и фильтровали образовавшийся осадок. После первой электрохимической обработки и фильтрации раствор содержал, мг/л: золото - 2,0, серебро - 7,1, платину - 19,7, палладий - 2,5, родий - 2,6, иридий - 9,2, никель, железо и свинец - менее 2,5, ТБФ, октанол - <10,0, керосин - 22, НСО - 45. Затем раствор пропускали через две последовательно соединенные камеры фильтрпрессного электролизера с трехмерным графитовым катодом, где осуществляли электроэкстракцию благородных металлов при габаритной плотности тока 60 А/м2 и скорости циркуляции электролита 2,0 м3/(м2·ч).

После двухстадийной электрохимической обработки с промежуточной фильтрацией, раствор содержал: золото, серебро, родий - <1 мг/л, палладий - 1,3 мг/л, платину - 2,9 мг/л и иридий - 3,8 мг/л, ТБФ и октанол в растворе не обнаружены, керосин - 12 мг/л, НСО - 36 мг/л.

Остальные примеры приведены в таблице.

Приведенные примеры показывают, что созданный способ характеризуется высокой степенью извлечения благородных металлов из растворов, образующихся при экстракционном разделении платиновых металлов, содержащих органические вещества и очистки растворов от неблагородных примесей. Кроме того, при электрохимической обработке существенно снижается концентрация токсичных органических веществ ТБФ и НСО в сбросных растворах.

ФОРМУЛА ИЗОБРЕТЕНИЯ

  1. Способ выделения благородных металлов из солянокислого раствора, включающий электрохимическую обработку раствора и осаждение благородных металлов на трехмерном проточном катоде из графитового материала, отличающийся тем, что обработке подвергают водный раствор после экстракционной переработки благородных металлов и ведут ее при катодной плотности тока 1500 - 2000 А/м2 и напряжении 8 - 12 В.

  2. Способ по п.1, отличающийся тем, что обработку раствора ведут в течение 0,5 - 1,5 ч.

  3. Способ по п.1 или 2, отличающийся тем, что перед обработкой раствор нейтрализуют до остаточной кислотности 20 - 30 г/л HCL.

Версия для печати
Дата публикации 05.12.2006гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

';>