special

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2112813

СПОСОБ ИЗВЛЕЧЕНИЯ ГАЛЛИЯ ИЗ РАСТВОРОВ ПРИ ПЕРЕРАБОТКЕ АЛЮМИНИЕВОГО СЫРЬЯ МЕТОДОМ СПЕКАНИЯ

СПОСОБ ИЗВЛЕЧЕНИЯ ГАЛЛИЯ ИЗ РАСТВОРОВ
ПРИ ПЕРЕРАБОТКЕ АЛЮМИНИЕВОГО СЫРЬЯ МЕТОДОМ СПЕКАНИЯ

Имя изобретателя: Скворцов Александр Юрьевич (UA); Фомичев Юрий Александрович (UA); Полякова О.П. 
Имя патентообладателя: Арендное предприятие "Николаевский глиноземный завод" (UA)
Адрес для переписки: 
Дата начала действия патента: 1996.11.20 

Изобретение относится к гидрометаллургии редких металлов, а именно к повышению эффективности извлечения галлия из спекательных растворов и пульп. Способ заключается в извлечении галлия из растворов или пульп сорбцией на комплексообразующем ионите с последующей десорбцией и получением богатого по галлию десорбата.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к гидрометаллургии редких элементов и может быть использовано для извлечения галлия из содощелочных и содопоташных растворов, образующихся при переработке бокситов и нефелинов на глинозем методом спекания.

Для промышленного производства галлия используется метод цементации на галламе алюминия. К Недостаткам способа относятся: низкое извлечение галлия (10 - 30%), высокий расход алюминия на цементацию (13 - 40 г/г получаемого галлия), высокая чувствительность к примесному составу исходного раствора.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ извлечения галлия из растворов переработки нефелинового сырья и способ извлечения галлия из растворов переработки бокситов по методу спекания. Оба эти способа отличаются сырьем, основные же технологические приемы практически идентичны. Эта технология заключается в том, что исходные галлийсодержащие растворы подвергаются одно- или двустадийной карбонизации с получением алюмокарбонатного осадка, обогащенного галлием (концентрата). Этот концентрат отфильтровывается, растворяется в щелочи и полученный электролит направляется на извлечение галлия методом цементации. Недостатками способа являются многостадийность процесса; наличие малопроизводительных и трудоемких операций фильтрации больших потоков пульпы; значительные потери галлия в ходе осуществления процесса (сквозное извлечение галлия из растворов в металл 50 - 70%); высокий расход цементирующего металла (алюминия) на извлечении галлия (9 - 13 г на 1 г галлия).

Предлагаемое изобретение направлено на решение следующих задач:

  • повышение эффективности извлечения галлия из растворов, образующихся при переработке алюминиевого сырья методом спекания;
  • повышение извлечения галлия из растворов в металл;
  • снижение расхода алюминия в ходе цементации галлия.

Поставленные задачи достигаются тем, что галлий извлекают из указанных выше технологических растворов или пульп путем сорбции на комплексообразующем ионите, последующей десорбцией галлия кислыми растворами и переработке галлийсодержащих элюатов. Из этих элюатов галлий выделяется в осадок, осадок отфильтровывается и растворяется в щелочи с получением галлиевого электролита, из которого методом цементации или электролиза выделяют металлический галлий.

Сущность способа состоит в том, что извлечение, отделение от примесей и концентрирование галлия из спекательных растворов осуществляется в ходе сорбционного процесса. Из полученных после десорбции обогащенных по галлию и обедненных по примесям элюатов галлий выделяется в осадок известными методами (нейтрализацией щелочными реагентами, электродиализом и т.п.). В отличие от прототипа достигается большее извлечение галлия в концентрат и значительно более высокое его содержание в концентрате.

Экспериментальные данные по реализации предлагаемого способа приводятся в примерах

Пример 1. Раствор после выделения продукционного гидрата, образующийся при переработке бокситов методом спекания, поташный маточный раствор, образующийся при переработке нефелинов и разбавленный поташный маточник, после дополнительной карбонизации и отделения осадка пропускали через сорбционные колонки, заполненные комплексообразующим ионитом. Объем ионита в каждой колонке - 50 мл, скорость пропускания растворов - 100 мл/ч (2 уд. объема в час). Раствор, вытекающий из колонок (сорбат), собирали и анализировали на содержание галлия, при повышении концентрации галлия в сорбате выше 20 мг/л сорбцию прекращали. Емкость ионита определяли по его извлечению из растворов. Полученные данные приведены в табл. 1.

Как видно из приведенных результатов, во всех случаях извлечение галлия из растворов очень высокое, содержание галлия в сорбатах не превышает 0,015 г/л.

Пример 2. Ионит, насыщенный в условиях примера 1 п. 2 промыли водой и десорбировали в противотоке раствором серной кислоты (концентрацией 100 г/л). После пропускания 1,5 уд. объемов (75 мл) раствора серной кислоты со скоростью 1 уд. объем в час полученный кислый десорбат и ионит анализировали. Результаты опыта приведены в табл. 2.

Из данных табл. 2 следует, что в приведенных условиях достигается высокая степень извлечения галлия в десорбат, значительное отделение галлия от алюминия (соотношение Al2O3/Ga в исходном поташном маточнике более 100, а в десорбате - около 4). Отметим и, что сокращение объема галлийсодержащего раствора в результате цикла сорбция-десорбция в 6,7 раза, извлечение Ga в десорбат - 94,7% (из исходного поташного маточника).

Пример 3. Полученный в примере 2 кислый десорбат нейтрализовали раствором щелочи (22 г/л) до pH 6,6. Температура осаждения 60oC, время 1 ч. Полученный осадок отфильтровывали под вакуумом, промыли водой и растворили (во влажном состоянии) в растворе NaOH концентрацией 300 г/л. Из полученного электролита извлекли галлий цементацией на галламе алюминия (содержание алюминия в галламе 0,4%) в течение 12 ч. Составы образующихся промпродуктов приведены в табл. 3.

Извлечение галлия из десорбата в электролит превысило 99%, а в металл - 98,3%. Содержание галлия в концентрате и соответственно в электролите значительно больше, чем по способу-прототипу, (максимальное содержание Ga в концентрате - 0,23%, а в электролите 0,7 - 1,5 г/л). Расход цементирующего металла (гранулированного алюминия) по предлагаемому способу составил 2,4 г на 1 г получаемого галлия, по прототипу 9 - 13 г/г. Кроме этого, в результате использования более концентрированных по галлию электролитов повышается производительность цементации. Так, по способу-прототипу производительность составляет 1 - 1,5 кг/м2·сут, тогда как по предложенному способу - 7-8 кг/м2·сут. Сквозное извлечение галлия из исходных растворов в металл, рассчитанное по данным приведенных примеров, превышает 93%, по прототипу - 50 - 70%.

Пример 4. Ионит, насыщенный в условиях примера 1 п. 1, десорбировали серной кислотой, как указано в примере 2, затем осаждали концентрат, растворяли его и цементировали галлий в соответствии с параметрами, приведенными в примере 3. Полученные результаты приведены в табл. 4.

Видно, что и в случае использования маточных растворов от переработки бокситов методом спекания достигаются более высокие показатели процесса извлечения галлия по всем операциям по сравнению с прототипом.

Таким образом, предлагаемый способ извлечения галлия позволяет повысить степень извлечения галлия из технологических растворов; получить более богатые по Ga концентраты; значительно повысить показатели при получении металлического галлия на цементации.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ извлечения галлия из растворов при переработке алюминийсодержащего сырья методом спекания, включающий получение галлиевого концентрата, его растворение в щелочном растворе и цементацию галлия, отличающийся тем, что галлий извлекается из растворов и пульп непосредственно или после дополнительного выделения из них алюминия карбонизацией сорбцией на компрексообразующем ионите с последующей десорбцией.

Версия для печати
Дата публикации 16.03.2007гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

';>