special
  •  #StandWithUkraine Ukraine flag |
  • ~539320+1260
     Enemy losses on 854th day of War in Ukraine

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2280919

ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ

ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ

Имя изобретателя: Исмаилов Тагир Абдурашидович (RU); Вердиев Микаил Гаджимагомедович (RU); Евдулов Олег Викторович (RU) 
Имя патентообладателя: ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (ДГТУ) (RU)
Адрес для переписки: 367015, г.Махачкала, пр. имама Шамиля, 70, ДГТУ, отдел интеллектуальной собственности
Дата начала действия патента: 2004.04.23 

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ).

Технический результат:упрощение сопряжения ТЭБ с охлаждаемым (нагреваемым) объектом или источником тепла и системой теплосброса при нахождении сопрягаемых объектов в труднодоступных местах. ТЭБ содержит последовательно соединенные в электрическую цепь полупроводниковые термоэлементы, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа. Ветви термоэлементов расположены вдоль линии. Коммутационные элементы выполнены в виде гибких электроизолированных теплопроводов - медных шин с контактными площадками на концах, изготовленными из электропроводного материала. Первые контактные площадки соединены с двух сторон с ветвями полупроводника р- и n-типа. Вторые контактные площадки соединены с электроизолированными друг от друга площадками, выполненными в виде пленок металлов или сплавов, нанесенных на керамические пластины - теплопереходы, или в виде медных пластин, напаянных на электроизолированные пленочные контакты керамической пластины. Все четные коммутационные пластины соединены с одним, а нечетные - с другим теплопереходом.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ).

Прототипом изобретения является ТЭБ, описанная в [1]. ТЭБ состоит из последовательно соединенных в электрическую цепь полупроводниковых термоэлементов в виде меандры, каждый из которых образован двумя ветвями (столбиками, выполненными либо цилиндрическими, либо в виде прямоугольного параллелепипеда), изготовленными из полупроводника соответственно р- и n-типа. Ветви термоэлементов соединяются между собой вдоль линии посредством сплошных коммутационных пластин, выполненных, как правило, из меди. Электрически последовательно соединенные коммутационными пластинами термоэлементы, образующие ТЭБ, заключены между двумя высокотеплопроводными электроизоляционными пластинами - теплопереходами (обычно керамическими).

Недостатком известной конструкции является невозможность механической развязки объекта охлаждения, ТЭБ и системы теплосброса, а и сложность сопряжения с охлаждаемым (нагреваемым) объектом в случае работы ТЭБ в качестве холодильника и теплоподводящим (теплоотводящим) узлом в случае работы ТЭБ в качестве термоэлектрического генератора, размещенными в труднодоступных удаленных друг от друга местах, в том числе являющимися составной частью блока с плотной упаковкой элементов, или размещаемыми в герметичном объеме.

Для устранения указанного недостатка заявляется ТЭБ, коммутационные элементы которой выполнены в виде гибких электроизолированных теплопроводов с контактными площадками на концах, одними контактными площадками которые с двух сторон соединены с ветвями полупроводников р- и n-типа, а вторыми контактными площадками - с электроизолированными друг от друга площадками, выполненными в виде пленок металлов или сплавов, нанесенных на керамические пластины - теплопереходы, или в виде медных пластин, напаянных на электроизолированные пленочные контакты керамической пластины, причем все четные коммутационные пластины соединены с одним, а нечетные - с другим теплопереходом - керамической пластиной.

Конструкция ТЭБ приведена на чертеже.

ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ. Патент Российской Федерации RU2280919

ТЭБ содержит последовательно соединенные в электрическую цепь полупроводниковые термоэлементы, каждый из которых образован двумя ветвями (столбиками, выполненными либо цилиндрическими, либо в виде прямоугольного параллелепипеда), изготовленными из полупроводника соответственно р- и n-типа 1 и 2. Ветви 1 и 2 термоэлементов расположены вдоль линии, а коммутационные элементы 3 и 4 выполнены в виде гибких электроизолированных друг от друга теплопроводов - медных шин 5 с контактными площадками 6 и 7 на концах, изготовленными из электропроводного материала. Контактные площадки 6 соединены с двух сторон с ветвями полупроводника р- и n-типа 1 и 2, а контактные площадки 7 - с электроизолированными друг от друга контактными площадками 8, выполненными в виде пленок металлов или сплавов, нанесенных на керамические пластины - теплопереходы 9, или в виде медных пластин, напаянных на электроизолированные пленочные контакты керамической пластины, причем все четные коммутационные пластины 4 соединены с одним, а нечетные 3 - другим теплопереходом. Контакты 10 служат для подвода электрической энергии к ТЭБ в случае ее работы в качестве термоэлектрического холодильника и отвода электрической энергии от ТЭБ в случае ее работы в качестве термоэлектрического генератора.

В режиме термоэлектрического холодильника ТЭБ работает следующим образом.

При прохождении по ТЭБпостоянного электрического тока, подаваемого от источника электрической энергии через контакты 10, между коммутационными элементами 3 и 4, представляющими собой контакты ветвей р- и n-типа 1 и 2, возникает разность температур, обусловленная выделением и поглощением теплоты Пельтье в местах соединения ветвь р-типа 1 - контактная площадка 6 - ветвь n-типа 2 и ветвь n-типа 2 - контактная площадка 6 - ветвь р-типа 1. При указанной на чертеже полярности электрического тока происходит нагрев коммутационных элементов 3 и охлаждение коммутационных элементов 4. Соответственно имеет место охлаждение верхнего теплоперехода 9, контактирующего через электроизолированные площадки с коммутационными элементами 3. Если при этом за счет теплоотвода температура нижнего теплоперехода 9, контактирующего через площадки 8 с коммутационными элементами 3, поддерживается на постоянном уровне, то температура верхнего теплоперехода, находящегося в тепловом контакте с коммутационными элементами 4 через контактные площадки 8, понизится до некоторого определенного значения. При заданном электрическом токе величина снижения температуры на верхнем теплопереходе 9 будет зависеть от тепловой нагрузки на нем. Тепловая нагрузка складывается из теплопритока от окружающей среды, тепла от горячих контактов, обусловленного теплопроводностью образующих ТЭБ ветвей, теплоты Джоуля, а и тепла, поступающего от объекта охлаждения.

Предложенное исполнение ТЭБпозволит осуществлять механически гибкое сочленение охлаждаемого объекта (источника теплоты) и системы теплосброса, а и контакт с охлаждаемым (нагреваемым) объектом, находящимся в труднодоступном месте за счет специальной конструкции коммутационных элементов (протяженности и гибкости), при этом потери тепла на коммутационных элементах будут незначительны.

ТЭБ в режиме термоэлектрического генератора функционирует следующим образом.

При наличии источника тепла, нагревающего, например, нижний теплопереход 9, а и имеющие с ним непосредственный тепловой контакт коммутационные элементы 3, и системы, рассеивающей тепло с верхнего теплоперехода 9 и коммутационных элементов 4, между коммутационными элементами 3 и 4 устанавливается некоторая разность температур. При наличии такой разности температур между коммутационными пластинами 3 и 4, осуществляющими контакт ветвей р- и n-типа 1 и 2, между контактами 10 возникает разность потенциалов - термо-э.д.с., обусловленная эффектом Зеебека. При замыкании контактов 10 на определенную электрическую нагрузку в образовавшейся цепи возникает постоянный электрический ток. Величина протекающего в цепи электрического тока зависит от значения термо-э.д.с., которая в свою очередь зависит от коэффициента термо-э.д.с. термоэлектрического материала, числа термоэлементов в ТЭБ, разности температур между коммутационными элементами 3 и 4 и величины электрической нагрузки.

Преимуществом использования данной конструкции является обеспечение возможности гибкого сопряжения элемента тепловыделения, ТЭБ и системы теплосброса, а и удобство сопряжения теплопереходов 9 с системой, рассеивающей тепло, и источником тепла, находящихся в труднодоступных и отдаленных друг от друга местах.

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА

Поздняков Б.С., Коптелов Е.А. Термоэлектрическая энергетика. М.: Атомиздат, 1974.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Термоэлектрическая батарея, состоящая из последовательно соединенных в электрическую цепь посредством коммутационных элементов полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа, заключенных между двумя теплопереходами, отличающаяся тем, что коммутационные элементы выполнены в виде гибких электроизолированных теплопроводов с контактными площадками на концах, одни контактные площадки которых с двух сторон соединены с ветвями полупроводников р- и n-типа, а вторые контактные площадки - с электроизолированными друг от друга контактами, выполненными в виде пленок металлов или сплавов, нанесенных на теплопереходы - керамические пластины, или в виде медных пластин, напаянных на электроизолированные пленочные контакты керамической пластины, причем все четные коммутационные элементы соединены с одним, а нечетные - с другим теплопереходом - керамической пластиной.

Версия для печати
Дата публикации 02.12.2006гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018