special
  •  #StandWithUkraine Ukraine flag |
  • ~545090+1280
     Enemy losses on 859th day of War in Ukraine

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2130912

СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ

СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ

Имя изобретателя: Садович М.А.; Лохова Н.А.; Волкова О.Е.; Яковлев Е.И. 
Имя патентообладателя: Братский индустриальный институт
Адрес для переписки: 665728, Иркутская обл., Братск, ул.Макаренко 40, Братский индустриальный институт, патентный отдел
Дата начала действия патента: 1997.10.07 

Изобретение относится к производству строительных материалов и может быть использовано для изготовления стеновых керамических изделий. Сырьевая смесь содержит компоненты при следующем соотношении, мас.%: глиежи 23-41, микрокремнезем 77-59. Способ изготовления стеновых керамических изделий из вышеназванной сырьевой смеси включает приготовление шихты, формование, сушку, обжиг при 900-950oC, дополнительное увлажнение изделий после обжига. Технический результат изобретения - повышение прочности обожженных изделий.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Предлагаемое изобретение относится к производству строительных материалов и может быть использовано для изготовления стеновых изделий.

Известна сырьевая смесь для изготовления керамических изделий, включающая отводы производства ферросилиция, суглинок и химическую добавку [1]. Однако изделия из предложенной массы характеризуются высокой средней плотностью, а следовательно, ухудшенными теплозащитными свойствами.

Наиболее близкой к предлагаемой сырьевой смеси по технической сущности и достигаемому эффекту является сырьевая смесь, включающая, мас.%: 60...85% золы сухого отбора Томь-Усинской ГРЭС и 40...15% тонкодисперсных отходов ферросилиция [2] . Недостатком указанной смеси является относительно низкая прочность обожженных изделий.

Изобретением решается задача повышения прочности обожженных изделий.

Технический результат достигается тем, что в сырьевой смеси в качестве кремнеземистой пыли используется микрокремнезем производства кристаллического кремния, а в качестве алюмосиликатного компонента - глиежи при следующем соотношении компонентов, мас.%:

Глиежи - 23-41

Микрокремнезем производства кристаллического кремния - 77-59

Микрокремнезем производства кристаллического кремния представляет собой многотоннажный отход, большая часть которого в настоящее время не находит себе какого-либо рационального применения. Удельная поверхность микрокремнезема - более 25 тыс.см2/г.

Преимущественный размер частиц этого отхода составляет 0,1...3 мкм. По существующей технологической схеме микрокремнезем осаждается в электрофильтрах системы газоочистки плавильных печей производства кристаллического кремния, после чего удаляется в виде водной суспензии в шламохранилища.

Микрокремнезем производства кристаллического кремния является аморфным материалом и имеет следующий химический состав, мас.%:

SiO2 - 90 - 95

Al2O3 - До 0,8

Fe2O3 - До 0,8

CaO - До 1,6

MgO - До 1,2

K+ - До 0,25

Na+ - До 0,06

SiC - До 5

Сообщ. - До 9

п.п.п. - До 20

Высокая удельная поверхность и аморфное состояние микрокремнезема обуславливают его высокую химическую активность и снижение температур реакций, протекающих при обжиге. Выгорание углерода, содержащегося в отходе, обеспечивает дополнительную поризацию черепка и снижение расхода топлива на обжиг.

Глиежи - природные горелые породы, образующиеся в результате самообжига угленосных пород в естественных условиях в течение длительного времени. Глиежи, обладая высоким содержанием дегидратированной глинистой составляющей, почти не имеют стекловидной фазы и углистых примесей.

Химический состав глиежей Кодинского месторождения, мас.%

SiO2 - 63,6

Al2O3 - 18,4

Fe2O3 - 7,2

CaO - 2,3

MgO - 1,9

SO3 - 0,13

TiO2 - 0,84

Na2O - 1,43

K2O - 3,7

п.п.п. - 0,5

S - 100

Растворимый Al2O3 - 3,7

Частично разложившаяся и разупорядоченная структура глиежей, а и высокое содержание в них растворимых щелочей, оксидов алюминия, железа обуславливают активное взаимодействие глиежей и микрокремнезема с образованием силикатного расплава и формированием прочного керамического черепка.

Известен способ изготовления керамических изделий, включающий приготовление смеси, формование, сушку и обжиг изделий [1]. Однако изделия, изготовленные по этому способу, имеют относительно высокую среднюю плотность и ухудшенные теплозащитные характеристики.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому эффекту является способ [2], включающий приготовление смеси, формование, сушку и обжиг изделий при 1000oC. Недостатками указанного способа являются повышенные затраты на обжиг и низкая прочность обожженных изделий.

Технический результат достигается тем, что изделия, изготовленные из предлагаемой смеси, обжигают при 900...950oC и помещают во влажную среду.

Пример 1

Для приготовления сырьевой смеси используют микрокремнезем производства кристаллического кремния Братского алюминиевого завода и глиежи Кодинского месторождения.

Измельченные до размера частиц менее 1 мм глиежи смешивают с микрокремнеземом, после чего вводят воду в количестве, необходимом для получения шихты влажностью 16%. Содержание ингредиентов (в мас.%) в предлагаемых составах приведено в табл. 1 (составы N 1, 2, 3, см. в конце описания). Из полученной шихты методом полусухого прессования при давлении прессования 25 МПа формуют образцы-цилиндры диаметром 40 мм, которые высушивают при 100...110oC до постоянной массы и обжигают при 1000oC.

Для обожженных изделий определяют среднюю плотность, водопоглощение, прочность при сжатии и рассчитывают коэффициент конструктивного качества.

Применение предлагаемой сырьевой смеси позволяет повысить прочность обожженных изделий в 2,1...2,7 раза при сохранении значений средней плотности.

Конкретные значения оцениваемых параметров по п. 1. приведены в табл. 1



Пример 2

Изделия, изготовленные по п. 1, высушивают при 100...110oC до постоянной массы и обжигают при 900...950oC. После обжига образцы увлажняют путем выдерживания в воде в течение суток.

Для обожженных изделий определяют среднюю плотность, водопоглощение, прочность при сжатии сухих и выдержанных в течение суток в воде изделий.

Увлажнение обожженного материала приводит к гидратации низкоосновных минералов, образовавшихся в процессе обжига наряду с традиционной керамической составляющей, что в свою очередь обеспечивает дополнительный прирост прочности изделий при увлажнении.

Конкретные значения оцениваемых параметров по п. 2 приведены в табл. 2 (см. в конце описания).

Предлагаемый способ обеспечивает повышение прочности изделий в 1,5...3,1 раза.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. А.с. 1310366, МКИ C 04 B 33/100 - 1987. - N 18.

2. Пак Н.В., Артемова Л.М., Макаров В.Я., Школьников П.В. Производство золокерамического камня и блоков из золы Томь-Усинской ГРЭС // Энергетическое строительство. - 1990. - 3. - с. 38.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Сырьевая смесь для изготовления стеновых керамических изделий, включающая кремнеземистый и алюмосиликатный компоненты, отличающаяся тем, что она содержит в качестве кремнеземистого компонента микрокремнезем в виде пылевидных отходов производства кристаллического кремния, а в качестве алюмосиликатного компонента - глиежи при следующем соотношении компонентов, мас.%:

Глиежи - 23 - 41

Микрокремнезем - 77 - 59

2. Способ изготовления стеновых керамических изделий из сырьевой смеси по п.1, включающий приготовление шихты, формование, сушку и обжиг, отличающийся тем, что изделия обжигают при 900 - 950oC и после обжига помещают во влажную среду.

Версия для печати
Дата публикации 06.04.2007гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018