special

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.


ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ТЕПЛОВОЙ ЭНЕРГИИ ОКРУЖАЮЩЕЙ СРЕДЫ
В ЭНЕРГИЮ ПОСТОЯННОГО ЭЛЕКТРИЧЕСКОГО ТОКА

Автор публикации: Зерний Анатолий Николаевич

Оставьте комментарий

Проблема современной энергетики состоит в том, что производство электроэнергии – источника материальных благ человека, находится в губительном противостоянии с его средой обитания – природой и как результат этого - неизбежность экологической катастрофы.

  Поиск и открытие альтернативных, экологически чистых, способов получения электроэнергии – актуальнейшая задача Человечества.

  Одним из источников энергии, является природная окружающая среда: воздух атмосферы, воды морей и океанов, которые содержат огромное количество тепловой энергии, получаемой от Солнца.

  Предлагается способ преобразования тепловой энергии окружающей среды в энергию постоянного электрического тока, основанный на контактных явлениях между металлом и полупроводниками различного типа проводимости.

  Приведены: принципиальная схема преобразователя, технологические условия изготовления и краткое описание принципа работы.

  Преобразователь представляет собой следующую принципиальную схему (см. рис. 1).

Полупроводниковый преобразователь тепловой энергии окружающей среды в энергию постоянного электрического тока

  где: П – кристалл полупроводника (кремний n-типа); р-n – переход с контактным электрическим полем Ек; М1 – металлический контакт с р-областью (алюминий); М2 -- металлический контакт с n-областью (алюминий); d – глубина залегания р-n перехода (не более 10 мкм); RH – сопротивление нагрузки внешней цепи.

  Принцип работы преобразователя заключается в следующем.

  Например, работа выхода электрона из полупроводника n-типа составляет 4,25 эВ, р-типа – 5,25 эВ, из алюминия – 4,25 эВ. Поэтому, контакт М2 с полупроводником n-типа является омическим и не влияет на работу преобразователя, а контакт М1 с полупроводником р-типа является инжектирующим.

  Под действием сил теплового движения и в результате различия работ выхода, электроны из металлического контакта М1 будут инжектироваться в р-область полупроводника. Часть электронов рекомбинирует с дырками р-области кристалла, а остальная часть электронов будет перебрасываться электрическим полем р-n перехода Ек в n-область кристалла. При этом n-область полупроводникового кристалла и контакт М2 будут заряжаться отрицательно, а контакт М1, из-за ухода из него электронов, - положительно, что в итоге приведет к возникновению разности электрических потенциалов между контактами М1 и М2.

  Поток электронов из М1в М2 будет иметь место до тех пор, пока возрастающее электрическое поле между контактами не вызовет встречный поток электронов из n-области в р-область кристалла из-за снижения потенциального барьера р-n перехода. Когда эти токи электронов сравняются, в изолированном кристалле установится электрическое и термодинамическое равновесие. При этом между контактами М1 и М2установится разность потенциалов равная половине контактной разности потенциалов p-n перехода (в данном случае – 0,55В), что означает наличие между ними Э.Д.С. (холостого хода).

  Если замкнуть контакты М1и М2 внешним металлическим проводником с сопротивлением Rн, то электрическое и термодинамическое равновесие полупроводникового кристалла нарушится и в цепи нагрузки потечет электрический ток I Rн. При этом p-n переход будет охлаждаться, т. к. энергия электронов переходящих из р-области в n-область полупроводника будет увеличена за счет внутренней (тепловой) энергии кристаллической решетки полупроводника. Для поддержания в цепи нагрузки постоянного по величине тока, к кристаллу необходимо подводить теплоту от окружающей среды – Qo. c.

Версия для печати
Автор: Зерний Анатолий Николаевич
P.S. Материал защищён.
Дата публикации 04.04.2004гг


НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ НОВЫЕ СТАТЬИ И ПУБЛИКАЦИИ

Технология изготовления универсальных муфт для бесварочного, безрезьбового, бесфлянцевого соединения отрезков труб в трубопроводах высокого давления (имеется видео)
Технология очистки нефти и нефтепродуктов
О возможности перемещения замкнутой механической системы за счёт внутренних сил
Свечение жидкости в тонких диэлектрических каналох
Взаимосвязь между квантовой и классической механикой
Миллиметровые волны в медицине. Новый взгляд. ММВ терапия
Магнитный двигатель
Источник тепла на базе нососных агрегатов


Created/Updated: 25.05.2018

';>