special

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.

влияние широтно-импульсной модуляции на погрешность индукционных счетчиков электроэнергии и на потери в асинхронном двигателе

Влияние широтно-импульсной модуляции на погрешность индукционных счетчиков электроэнергии и на потери в асинхронном двигателе

  А. П. Попов, А. О. Чугулёв, А. А. Горшенков,  С. М. Клеванский

Сибирская государственная автомобильно-дорожная академия (СибАДИ)

 

Приведены результаты исследования погрешности индукционных счетчиков электрической энергии, а также электрических потерь в асинхронном двигателе в условиях высокого уровня гармоник в кривых тока и напряжения при использовании частотного преобразователя фирмы 'Mitsubishi' (E500 FR-E540-5,5K-EC) в качестве источника несинусоидального напряжения. Показано, что погрешность индукционных счетчиков электроэнергии и электрические потери в асинхронном двигателе при несинусоидальных режимах в цепях с ШИМ возрастают на несколько десятков процентов.

 

       Как известно, в системах электроснабжения в связи с увеличением потребителей электроэнергии, работающих в импульсном режиме, а также систем с широтно-импульсной модуляцией (ШИМ), частотных преобразователей в системах электроприводов с асинхронными двигателями, нелинейных нагрузок, тиристорных преобразователей и т.п. возникает высокий уровень высших гармоник.

     В связи с этим вопрос измерения электрической энергии в этих условиях остается актуальным, несмотря на то, что вопросам измерения электрической энергии, как при синусоидальных режимах, так и в условиях несинусоидальности электромагнитных процессов, посвящено значительное количество работ, например [1:6].

      Для измерения электрической энергии в системах электроснабжения в настоящее время применяются как индукционные, так и электронные счетчики электроэнергии. Причем последние чаще всего строятся на основе аналогово-цифровых преобразователей с использованием микропроцессорных вычислителей, т. е. в процессе вычисления электроэнергии применяется дискретизация измерений по времени и квантование входных сигналов, пропорциональных текущим значениям тока и напряжения на нагрузке, что неизбежно порождает погрешность вычисления энергии.

      В данной работе представлены результаты исследования погрешности индукционных счетчиков электрической энергии, а также потерь мощности в асинхронном двигателе в условиях высокого уровня гармоник в кривых тока и напряжения. При этом был использован специальный электронный счетчик электрической энергии, позволяющий получить достоверную информацию в условиях несинусоидальности, вызванной ШИМ.

     В качестве такого электронного счетчика использован специально разработанный для этих целей электронный счетчик, обеспечивающий с достаточно высокой точностью вычисление текущего значения электроэнергии  по сравнению с индукционным счетчиком, в соответствии с выражением:

,                                                  (1)

где - мгновенное значение напряжения на нагрузке;

 *- мгновенное значение тока нагрузки;

  - текущее время измерения.

        В структурной схеме такого счетчика в качестве перемножителя мгновенных значений  и  используется импульсное перемножающее устройство, импульсный интегратор и цифровой счетчик импульсов, что позволяет обеспечить суммарную погрешность измерения текущего значения электроэнергии порядка нескольких десятых долей процента (0,1¸0,2%) в условиях высокого уровня высших гармоник на частотах кратных 50 Гц, вплоть до частот в несколько десятков килогерц, и использовать его как образцовое средство измерения электрической энергии.

      В данной работе не ставится цель описания полной структурной и принципиальной электрической схем такого счетчика (заинтересованным организациям и учреждениям такая информация может быть предоставлена). Одна из задач состоит в определении возможного уровня погрешности индукционного счетчика в несинусоидальных режимах с высоким уровнем искажения кривых тока и напряжения на нагрузке.

Исследования проводились с использованием частотного преобразователя (ЧП) Mitsubishi E500 FR-E540-5,5K-EC с номинальной мощностью 5,5 кВт. В качестве нагрузки использовались нагревательные элементы и асинхронный двигатель. Структурная схема установки с нагревательными элементами и временные диаграммы токов и напряжений представлены на рис. 1 и рис. 2.

 

 

Рис. 1. Структурная схема установки: Wh1, Wh3 - индукционные счетчики электроэнергии СО 505; Wh2, Wh4 - электронные счетчики электроэнергии; ТТ - трансформатор тока; ДН - датчик напряжения; ЧП - частотный преобразователь; Rн - сопротивление нагрузки.

 

Перед проведением эксперимента в условиях несинусоидальности предварительно была осуществлена проверка на идентификацию показаний электронных и индукционных счетчиков при работе на одну и ту же нагрузку в режиме близком к синусоидальному. Схема включения приборов представлена на рис. 3. Временная диаграмма кривой напряжения на нагрузке приведена на рис. 2а.

 

а)    

б)    

в)  

Рис. 2. Временные диаграммы фазных напряжений (а и в) и фазных токов (б и в)

на входе и выходе ЧП для случая линейной активной нагрузки

 

 

Рис. 3. Схема проверки индукционных и электронных счетчиков на

идентификацию показаний при режиме близком к синусоидальному

 

 

При проведении эксперимента использован следующий режим работы частотного преобразователя:

- частота основной гармоники напряжения на выходе ЧП f = 50 Гц;

- частота ШИМ напряжения на выходе ЧП - 1 кГц;

- сопротивление нагрузки частотного преобразователя RH = 38 Ом (режим близкий к номинальному)

Было проведено несколько опытов с достаточно точным измерением времени работы счетчиков электроэнергии и регистрацией их показаний.

По показаниям электронных счетчиков электроэнергии определено среднее значение коэффициента полезного действия частотного преобразователя при указанной нагрузке:

где  - среднее значение мощности на выходе ЧП;

  - среднее значение потребляемой ЧП мощности;

(Среднеквадратическое отклонение показаний от среднего значения составляло 0,05%)

     В результате проведенных измерений по схеме рис. 1 были установлены относительные значения * разностей показаний электронных и индукционных счетчиков электроэнергии в процентах по входу и выходу ЧП, которые с учетом статистической обработки составили следующие значения:

, .

      Из полученных результатов следует, что при одних и тех же значениях нагрузки в условиях несинусоидальных режимов в цепях с ШИМ, основная погрешность индукционных счетчиков электроэнергии в несколько десятков раз превышает их основную погрешность при синусоидальном режиме.

        Приведенные результаты исследования получены, как уже упоминалось, для линейной активной нагрузки. В связи с тем, что ЧП используются в основном для питания асинхронных двигателей (АД) с целью регулирования оборотов, был проведен эксперимент по определению потерь мощности в АД при питании его от ЧП Mitsubishi E500 FR-E540-5,5K-EC. Для экспериментальных исследований был использован асинхронный двигатель АИР100L2Y3 (ном. мощность 5.5 кВт, 3000 об/мин). В качестве нагрузки АД применен нагруженный на нагреватель генератор постоянного тока со смешанным возбуждением. Предварительно проводилось измерение мощности потребляемой АД и нагрузкой при синусоидальном режиме. После обработки экспериментальных данных было установлено, что при питании АД от ЧП при прочих равных условиях потери мощности в АД возрастают на 30% по сравнению с синусоидальным режимом. Это приводит к изменению теплового режима работы АД и необходимости снижения его нагрузки. Причины возрастания потерь в АД при несинусоидальных режимах известны и в данной работе не обсуждаются. Главная цель состояла в установлении уровня этих потерь.

 

      Выводы:

1.  Впервые экспериментально установлен уровень основной погрешности (десятки процентов)   индукционных счетчиков электрической энергии в условиях несинусоидальности, создаваемой ШИМ.

2.   Потери в регулируемых асинхронных двигателях, питание которых осуществляется от ЧП, также возрастает по сравнению со стандартным режимом питания на несколько десятков процентов, что приводит к перегреву АД и необходимости снижения мощности нагрузки.


Created/Updated: 25.05.2018