special
  •  #StandWithUkraine Ukraine flag |
  • ~536840+1180
     Enemy losses on 853th day of War in Ukraine

This webpage has been robot translated, sorry for typos if any. To view the original content of the page, simply replace the translation subdomain with www in the address bar or use this link.

Математичне програмування - Наконечний С.І.

2.2. Загальна економіко-математична модель задачі лінійного програмування

Загальна лінійна економіко-математична модель економічних процесів та явищ — так звана загальна задача лінійного програмування подається у вигляді:

(2.1)

за умов:

(2.2)

(2.3)

Отже, потрібно знайти значення змінних x1, x2, …, xn, які задовольняють умови (2.2) і (2.3), і цільова функція (2.1) набуває екстремального (максимального чи мінімального) значення.

Для довільної задачі математичного програмування у § 1.2 були введені поняття допустимого та оптимального планів.

Для загальної задачі лінійного програмування використовуються такі поняття.

Вектор Х = (х1, х2, …, хn), координати якого задовольняють систему обмежень (2.2) та умови невід’ємності змінних (2.3), називається допустимим розв’язком (планом) задачі лінійного програмування.

Допустимий план Х = (х1, х2, …, хn) називається опорним планом задачі лінійного програмування, якщо він задовольняє не менше, ніж m лінійно незалежних обмежень системи (2.2) у вигляді рівностей, а також обмеження (2.3) щодо невід’ємності змінних.

Опорний план Х = (х1, х2, …, хn), називається невиродженим, якщо він містить точно m додатних змінних, інакше він вироджений.

Опорний план , за якого цільова функція (2.1) досягає масимального (чи мінімального) значення, називається оптимальним розв’язком (планом) задачі лінійного програмування.

Задачу (2.1)—(2.3) можна легко звести до канонічної форми, тобто до такого вигляду, коли в системі обмежень (2.2) всі bi (i = 1, 2, …, m) невід’ємні, а всі обмеження є рівностями.

Якщо якесь bi від’ємне, то, помноживши i-те обмеження на (– 1), дістанемо у правій частині відповідної рівності додатне значення. Коли i-те обмеження має вигляд нерівності аi1х1 + аi2х2 + … + аinxnbi, то останню завжди можна звести до рівності, увівши додаткову змінну xn + 1: ai1x1 + ai2x2 + … + + ain xn + xn + 1 = bi.

Аналогічно обмеження виду аk1x1 + ak2x2 + … + aknxnbk зводять до рівності, віднімаючи від лівої частини додаткову змінну хn + 2, тобто: ak1x1 + ak2x2 + … + aknxnxn + 2 = bk (хn+1 ≥ 0, хn+2 ≥ 0).

Доведемо, що заміна нерівностей рівняннями за допомогою введення додаткових змінних не змінить розв’язку початкової задачі. Розглянемо лінійну нерівність з n невідомими:

(2.4)

Для зведення нерівності (2.4) до рівняння необхідно до її лівої частини додати деяку невід’ємну величину хn + 1 ≥ 0. У результаті дістаємо лінійне рівняння, яке містить n+1 змінну:

a1x1 + a2x2 + … + anxn + xn + 1 = b. (2.5)

Теорема 2.1. Кожному розв’язку нерівності (2.4) відповідає єдиний розв’язок рівняння (2.5), який одночасно є розв’язком нерівності (2.4), і, навпаки, кожному розв’язку рівняння (2.5) і нерівності (2.4) відповідає єдиний розв’язок нерівності (2.4).

Доведення: Нехай X* — розв’язок нерівності (2.4), тоді підстановкою нерівність виконується:

.

Перенесемо ліву частину даної нерівності в праву і позначимо вираз у правій частині через , тобто:

Отже, розв’язок задовольняє рівняння (2.5) і водночас нерівність (2.4). Дійсно, і при підстановці в рівняння маємо:

Навпаки, нехай Y* задовольняє рівняння (2.5) і нерівність (2.4), тобто:

і .

Тоді, відкидаючи в лівій частині рівності невід’ємну величину , отримаємо нерівність:

.



 

Created/Updated: 25.05.2018